ETH:zurich

Deep Learning for Autonomous Driving, Spring 2021

Multi-Task Learning for Semantics and Depth
Project Report

Yifei Liu (Team 51)
yifeiliu@uzh.ch

May 14, 2021

1 Probleml: Joint Architecture

1.1 Hyper-parameter tuning

— In this task, we are already provided a baseline code that can function out of the box. And the aim of
this task is to find as best hyper-parameters as possible for the baseline model.

The candidate hyper-parameters which should be tuned are specified to: (1)optimizer, (2)learning rate,
(3)batch size, and (4)task weights. In my experiments, I first explore the first three hyper-parameters to
pick out a best and stable combination, and then go ahead with the forth hyper-parameter. The running
results are in Figure 1, Figure 2 and Table 1.

My procedure to explore hyper-parameters are:
1. fix the optimizer to be sgd.
2. change the learning rates logarithmically.
3. change batch size and for every batch size do step 2 again.
4. change optimizer to be adam and do step 2 and 3 again.
5. fix a best combination for the previous three hyper-parameters, then change task weights

Notice that number of epochs always equals four times the batch size, which ensures a constant

number of steps for each training, making the results comparable.

Analyzing the results:

e The default learning rate 1 x 1072 is not optimal for sgd for this task (Figure 1). The best learning
rate for sgd is around 1 x 10~!, while the best learning rate for adam is around 2 x 10~%. By the
way, if the learning rate deviates the best setting too much, the performance of the model drops
down dramatically.

e Larger batch sizes are better for improving the model performance (Figure 1). But the training time
and cost also increase almost linearly, so it is a trade-off between cost and accuracy.

mailto:yifei.liu@uzh.ch

50

Optimizor = sgd

I
o
T

Grader Score (Validation)
o
(@]
I

N
(@]
T

batch size=2, epochs=8
—&— batch size=4, epochs=16
—&— batch size=8, epochs=32
—&— batch size=16, epochs=64

103

1072
Learning rate (log scale)

101

Grader Score (Validation)

Optimizor = adam

50 TTTT] T T T rrrr T T T T Trrr T T T T1Trr]
40 -
30 -
—&8— batch size=4, epochs=16
20 || 5~ batch size=8, epochs=32
—&—batch size=16, epochs=64
Ll Ll Lol L]
10°° 10-* 1073 102

Learning rate (log scale)

Figure 1: Grader score of sgd and adam with different learning rates and batch sizes

* For a specific setting, changing the loss weights only affects the performance very little (Figure 2).
And the best performance is attained while loss weight of semantic segmentation = 0.7 (Figure 2).

¢ By trading off the budget and accuracy, I decide to use the bold set of hyper-parameters in Table
1 as the general setting for all the following problems, unless otherwise stated. Notice that
given batch_size = 8, "sgd with Ir = 0.1" gets the the highest grader score among all runs. But it
turns out to be unstable for training because the learning rate is such large that sometimes the loss
would go infinity, causing the model not to converge. This is why I choose adam instead.

¢ The run that produces the best validation score is G51_0424-2257_adam_0.0002_batch_16_epoch_64_91977
with a validation score of 48.554 and a grader score of 48.304 in Codalab.

¢ The baseline model G51_0425-1704_weight_seg_0.7_adam_0.0002_batch_8_epoch_32_e6c97 for all
following problems has a validation score of 46.807, and a Codalab score of 46.603.

Name ‘ Optimizer Learning rate Batchsize Loss weight | Grader score(val)

G51_0424-2257_adam_0.0002_batch_16_epoch_64_91977 adam 0.0002 16 0.5 48.554
G51_0422-0009_sgd_0.1_batch_16_epoch_64_5f080 sgd 0.1 16 0.5 47.785
G51_0420-0442_sgd_0.1_batch_8_epoch_32_{2743 sgd 0.1 8 0.5 47.333
G51_0423-2230_sgd_0.03_batch_16_epoch_64_833d8 sgd 0.03 16 0.5 47.311
G51_0425-1704_weight_seg_0.7_adam_0.0002_batch_8_epoch_32_e6c97 adam 0.0002 8 0.7 46.807
G51_0423-2221_adam_0.0002_batch_8_epoch_32_52b42 adam 0.0002 8 0.5 46.529

Table 1: summary of (highest) different hyper-parameters in Task 1.1

1.2 Hardcoded hyperparameters
1.2.1 Initialization with ImageNet weights
Q: Is the encoder initialized with weights of a model trained on the ImageNet classification task?

A:No. In the ModelDeepLabV 3Plus class the "pretrained” parameter is set by default to False.

Q:What is the effect of switching this option?

Optimizor= adam, learning rate= 0.0002, batch size= 8
50 T T T T T

S S =
=~ (o)) [o/¢]
T T T
| | |

Grader Score (Validation)
S
N
T
|

=
()

| | | | |
0.1 0.3 0.5 0.7 0.9
loss weight of semantic segmentation

Figure 2: Influence of different loss weights (depth weight = 1— loss weight of semantic segmentation)

A:Using pretrained weights from ImageNet classification improves performance of the model (Table
2), since many lower features and general representations are shared by this ResNet34 encoder. And
since the pretrained weights were trained on large amount of data, it would be helpful for extracting
useful low-level features. For all the following problems, I use pretrained=True as the general setting,
unless otherwise stated. The Codalab score of the pretrained model is 48.501.

Name ‘ Pretrained ‘ Grader score(val,Codalab)
G51_0426-2134_pretrained_True_weight_seg 0.7_adam_0.0002_6715e True 48.701, 48.501
G51_0425-1704_weight_seg 0.7_adam_0.0002_batch_8_epoch_32_e6c97 False 46.807, 46.603

Table 2: Influence of using pretrained weights

1.2.2 Dilated convolutions

Q: Are dilated convolutions enabled in the provided code?

A: No. The dilation was prohibited by default due to the flag replace_stride_with_dilation=(False, False,
False). The BasicBlock’s architecture is Figure 3. The default encoder with flag=(False, False, False) is
Figure 4.

Q: Set dilation flags to (False, False, True). Does the performance improve? If so, why?

A: Yes, the validation score increases from 48.701 to 59.691 (Table 3). The architecture of Encoder with
dilation is in Figure 5. Comparing Figure 4 and Figure 5, we can see the differences of using dilation or
not are in the last three basic blocks (blue blocks) and the resulting resolution. The dilation increases
receptive field without losing resolution, so the following features preserve a higher resolution and more
detailed semantic information, thus creating better performance.

&~

3x3conv, BN, relu

—

3x3conv, BN

VAR

@

relu

J

Figure 3: BasicBlockWithDilation. The dilation of the first 3 x3conv is 1. The stride of the second 3 x3conv
is 1. If the stride of the first 3x3conv >1 or number of channels changes, the skip connection should
be downsampled by a 1x1conv. The padding of the second 3x3conv = dilation, keeping the spatial

resolution.
Name ‘ Flag ‘ Grader Score(val,Codalab)
G51_0426-2134_pretrained_True_weight_seg 0.7_adam_0.0002_6715e | (False False, False) 48.701, 48.501
G51_0505-0106_FalseFalseTrue_adam_0.0002_e3376 (False, False, True) 59.898, 59.816

Table 3: Influence of enabling dilations in the encoder

1.3 ASPP and skip connections

The change of the original template code are ASPPpart class, ASPP class, DecoderDeeplabV3p class in
model_parts.py and ModelDeepLabV3Plus class in model_deeplab_v3_plus.py. Figure 6 summarizes my
implementation of the ASPP class, while Figure 7 summarizes the DecoderDeeplabV3p class. My
implementation(architecture design, hyperparameter choice) is based on [2]. For example, number of
3 x 3 convolution layers in the decoder is 2, and number of channels in the skip connection is 48.

The ASPP and skip connection improve the performance a lot, increasing the validation score from 59.898
to 68.26, while the expected score of this model was 62.3 +4.0 (Table 4)

Name ‘ Dilation ASPP and skip | Grader score(val,Codalab)
G51_0505-0106_FalseFalseTrue_adam_0.0002_e3376 v 59.898, 59.816
G51_0506-2134_ASPP_with_skip_8494e v v 68.26, 68.296
Expected model performance v v 62.3 +4.0

Table 4: Performance of ASPP with skip models

BasicBlock
EnCOder \WithDilation
Flag=(F,F,F)
Image or
. Feature Map
7x7conv 3x3maxpooling
stride=2 stride=2
padding=3 padding=1
bn,relu bn,relu
(N,3,H,W) (N,64,H/2,W/2) (N,64,H/4,W/4)
] |:| stride=2]
stride=1 .
[] stide=2 [] stridess
|:| stride=2
stride=1 l:l stride=1 |:| stride=1
|:| stride=1
l:l stride=1 |:| stride=1
stride=1
|:| stride=1
l:l stride=1 |:| stride=1
N l:l stride=1
N N N
/
(N,64,H/4,W/4) (N,128,H/8,W/8) (N,256,H/16,W/16) (N,512,H/32,W/32)
Figure 4: Encoder, flag=(F EF)
BasicBlock
Encoder WithDilation
Flag=(FF.T) Image or
Feature Map
7x7conv 3x3maxpooling
stride=2 stride=2
padding=3 padding=1
bn,relu bn,relu
(N,3,H,W) (N,64,H/2,W/2) (N,64,H/4,W/4)
] ‘:I stride=2 [
stride=1 .
[] stride=2 [] stricest
‘:I stride=1
stride=1 [] stide=t [] stide-t dilation=2
|:| stride=1
I:l stride=1 |:| stride=1 dilation=2
stride=1 |:| stride=1
A% |:| stride=1
N N N
/ / /

(N,64,H/4,W/4)

(N,128,H/8,W/8)

(N,256,H/16,W/16)

Figure 5: Encoder, flag=(FET)

(N,512,H/16,W/16)

ASPP

Feature Map

1x1 conv,bn,relui
(N,256,H/16,W/16)
3x3conv,bn,rely_} p—
dilation=6 concat 1x1conv
] (N,256,H/16,W/16) ? bl !
(N,512,H/16,W/16) (N,1280,H/16,W/16) (N,256,H/16,W/16)
3x300nv,bn,relp_}
dilation=12
(N,256,H/16,W/16)
[Sx3cony,bn,reluy
dilation=18
(N,256,H/16,W/16)
[1x1con upsample
globallavg 3
pooling m) -
(N,256,1,1) (N,256,1,1) (N.256,H/16,W/16)

Figure 6: The ASPP architecture

Decoder

(Features |uPsample
from ASPP) N | Feature Map

(N,256,H/16,W/16) (N,256,H/4,W/4)

t 3 con3x3
conca
bn,relu
TFeatures | 1xdconv (N,304,H/4,W/4) (N,256,H/4,W/4)
from J
Encoder) bn,relu
(N,64,H/4,W/4) (N,48,H/4,W/4)

con3x3,bn,relu

1x1conv
e

(N,256,H/4,W/4) (N,ch_out,H/4,W/4)

Figure 7: The Decoder architecture

2 Problem2: Branched Architecture

For the branched model, all the code in model_parts.py remain the same as in Problem 1.3. The only
change of code is that I created a new source file called branched_model.py. And of course the config.py and
helpers.py were changed accordingly. The implementation is straightforward and follows the guidance of
the corresponding graph in the handout. The relevant code is in branched_model.py.

The branched architecture improves the performance by about 1.5 grader score. See Table 5.

Name Dilation ASPP and skip Branch | Grader score(val,Codalab)
G51_0505-0106_FalseFalseTrue_adam_0.0002_e3376 v 59.898, 59.816
G51_0506-2134_ASPP_with_skip_8494e v v 68.26, 68.296
G51_0508-0928_Branched_d322f v v v 69.709, 69.771
Expected model performance v v v 65.3 +4.0

Table 5: Performance of the branched model

3 Problem3: Task Distillation

The relevant code of distillation model is in distillation_model.py. The implementation strictly follows
the corresponding graph given in the handout. Note that for the first decoder for depth and semantic
segmentation I use the same architecture as before(Figure 7), while for the last decoder for the depth and
semantic segmentation I simply use two 3 x 3 convolution plus batch normalization and relu, followed
by a 1 x 1 convolution which produces the final prediction at the scale of a quarter of the original

resolution. The relevant code for the last decoder is FinalDecoder class in model_parts.py

I experimented the distillation model with intermediate supervision and without intermediate su-

pervision, and found that the intermediate supervision actually decrease the performance a little (the 4"

5th

row and the 5™ row in Table 6).

Name ‘ Dilation ASPP and skip Branch Distillation Intermed.Supv ‘ Grader score(val,Codalab)
G51_0505-0106_FalseFalseTrue_adam_0.0002_e3376 Ve 59.898, 59.816
G51_0506-2134_ASPP_with_skip_8494e v v 68.26, 68.296
G51_0508-0928_Branched_d322f v v v 69.709, 69.771
G51_0510-1259_Distillation_db1a3 v v v v 70.333,70.512
G51_0514-1004_Distillation_Intermed_Supv_bed8b v v v v v 70.314, 70.497
Expected model performance v v v v v 67.3+ 4.0

Table 6: Performance of the distillation model

4 Summary

Table 6 shows that the methods in this project (including dilation, ASPP, skip connection, branched
architecture, multi-task distillation) all contribute to improving the performance of the model, just
as shown in [1], [3], [4], and [5]. My best model’s performance is 70.512, without using any method
mentioned in Problem 4. Since Problem 4 is cancelled, my report ends here.

References

[1] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. “Rethinking Atrous
Convolution for Semantic Image Segmentation.” In: CoRR abs/1706.05587 (2017). arXiv: 1706 .05587.
URL: http://arxiv.org/abs/1706.05587.

[2] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. “Encoder-
Decoder with Atrous Separable Convolution for Semantic Image Segmentation.” In: CoRR abs/1802.02611
(2018). arXiv: 1802.02611. URL: http://arxiv.org/abs/1802.02611.

[3] Davy Neven, Bert De Brabandere, Stamatios Georgoulis, Marc Proesmans, and Luc Van Gool. “Fast
Scene Understanding for Autonomous Driving.” In: CoRR abs/1708.02550 (2017). arXiv: 1708 .02550.
URL: http://arxiv.org/abs/1708.02550.

[4] Simon Vandenhende, Bert De Brabandere, and Luc Van Gool. “Branched Multi-Task Networks:
Deciding What Layers To Share.” In: CoRR abs/1904.02920 (2019). arXiv: 1904.02920. URL: http:
//arxiv.org/abs/1904.02920.

[5] Dan Xu, Wanli Ouyang, Xiaogang Wang, and Nicu Sebe. “PAD-Net: Multi-tasks Guided Prediction-
and-Distillation Network for Simultaneous Depth Estimation and Scene Parsing.” In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2018, pp. 675-684.

https://arxiv.org/abs/1706.05587
http://arxiv.org/abs/1706.05587
https://arxiv.org/abs/1802.02611
http://arxiv.org/abs/1802.02611
https://arxiv.org/abs/1708.02550
http://arxiv.org/abs/1708.02550
https://arxiv.org/abs/1904.02920
http://arxiv.org/abs/1904.02920
http://arxiv.org/abs/1904.02920

	Problem1: Joint Architecture
	Hyper-parameter tuning
	Hardcoded hyperparameters
	Initialization with ImageNet weights
	Dilated convolutions

	ASPP and skip connections

	Problem2: Branched Architecture
	Problem3: Task Distillation
	Summary

