
CVL, ETH Zurich Deep Learning for Autonomous Driving

Project 3: 3D Object Detection from Lidar Point Clouds
17/05/21 - 02/07/21

General Info: This project accounts for 20% of your grade. You are welcome to ask questions
in Piazza. If you think that your question may reveal the solution, please list your question for
instructors only.

Training: The AWS accounts distributed during Project 2 can still to be used for this project.
Please refer to the Project 2 description and the README.md of the provided solution template
for more information. However, unlike Project 2, each team will be using a faster GPU instance
(as indicated in the repository README) and therefore, are limited to a single GPU.

Grader: The graders purpose is to evaluate a submission archive corresponding to one ex-
periment run on the test data. This is required to report scores of solutions to the exercise
problems.

As in Project 2, the grader is hosted on CodaLab1. After registering, send an email to Ozan
Unal (ozan.unal@vision.ee.ethz.ch) with the subject "CODALAB EX3: CODALAB USERNAME", with
your real name and Legi in the body. After all team members are approved, you need to form
teams using the “Teams” tab functionality. You should choose the same team member as decided
previously for the shared AWS accounts. Choose a team leader who will create a new team and
handle other team members’ requests. Make sure to not make any individual submissions before
joining a team properly.

To get a submission graded, navigate to "Participate" → "Submit / View Results", se-
lect the correct problem, then click on the "Submit" button, and wait to get the submission
archive uploaded. Codalab begins file upload immediately after it was selected in the system
dialogue, and does not indicate the upload progress. After the upload has finished, the status
will change to indicate grading has been scheduled.

Submission: Your submission must contain two subdirectories: (1) problem 1/ which con-
tains the task files utils/task*.py that were used for problem 1 under a solution direc-
tory along with a report 1.pdf which contains a concise description of your solutions along
with the resulting figures; (2) problem 2/ which contains the necessary files of your repository
(e.g. without the tests/ directory) that was used for problem 2 along with a report 2.pdf

which contains a concise description of your solution. For further detail on report 2.pdf

please refer to problem statement. Final reports must be sent by each team in a file named
dlad ex3 teamID student1 student2.zip to Ozan Unal (ozan.unal@vision.ee.ethz.ch) by 23:59
CET 02.07.2021 with subject "DLAD EX3: TEAM ID".
Example (team 1): (name) dlad ex3 01 MaxVerstappen SergioPerez.zip (subject) DLAD EX3: 01

Introduction: Unlike Project 2 where you have worked with 2D images, in this exercise we will
be working directly with irregular 3D point cloud data. We will be looking into one of the core
problems of 3D computer vision: 3D object detection. In specific, we will be building a 2-stage
3D object detector to detect vehicles in autonomous driving scenes, i.e. to draw 3D bounding
boxes around each vehicle (remember Task 2.3 from Project 1). An object bounding box has
seven degrees of freedom which need to be regressed: the center (x, y, z), the size (h,w, l) and
the yaw rotation r in radians. In autonomous driving, we consider the pitch and roll to be zero
as all object lie on the ground plane.

On top of the seven parameters, two further values need to be predicted for each bounding
box: (1) the class score and (2) the confidence score. The class score is used to determine to

1https://competitions.codalab.org/competitions/31727

1

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

Deep Learning for Autonomous Driving 2

Set Abstraction

Se
t A

bs
tr

ac
tio

n

Sa
m

pl
e

&
 G

ro
up

Po
in

tN
et

M
ax

Po
ol

Se
t A

bs
tr

ac
tio

n

Se
t A

bs
tr

ac
tio

n

Fe
at

ur
e

Pr
op

ag
at

io
n

Fe
at

ur
e

Pr
op

ag
at

io
n

Fe
at

ur
e

Pr
op

ag
at

io
n

3D
 P

ro
po

sa
l

G
en

er
at

io
n

H
ea

d

PointNet++ Feature Extractor features

detectionsxyz
intensity

target

Fe
at

ur
e

Pr
op

ag
at

io
n

Figure 1: Stage-1 RPN architecture. Accessible data keys for the second stage input are written
in red. For detections, shown are only the first 50 proposals generated by the first stage network.
Best viewed in color.

which class the box belongs, and since in this project we only consider the detection of a single
class (car) we forgo the class score estimation all together. The confidence score on the other
hand gives the likelihood at which an object lies within a bounding box, which, as the name
suggests, essentially gives us the networks confidence in its prediction.

A 2-stage detection pipeline is a common approach employed in many state-of-the-art 3D
object detectors [1, 2, 3]. The first stage, which is often referred to as the Region Proposal
Network (RPN), is used to create coarse detection results from the irregular point cloud data.
These initial detections are later refined in the second stage network to generate the final pre-
dictions. The idea behind such a 2-stage design is to process the entire point cloud in the first
stage and to generate regions-of-interest (ROI), i.e. smaller pools of information at and around
likely objects which later can be refined individually to form the final detection.

For this project, the first stage (which is commonly where the bulk of the network resides as
one can imagine) is prebuilt and pretrained to save time. What you are given are therefore the
initial predictions, i.e. the results of the first stage RPN alongside the extracted features and
point cloud data (illustrated in Fig. 1). To learn more about the data we recommend investi-
gating it on your own.

Materials: In the gitlab repository2 we provide a solution template for this project. In the
solution template you will find a dataset script to access the results of the first stage network.

• dataset.py: Pytorch Datatset object to import the provided dataset. Each data point
describes an drivable scene with (N,3) point coordinates, (N,128) corresponding RPN
features, (N,) corresponding intensity measurements along with RPN coarse detection
results and ground truth annotations. To easily collate data for processing, point clouds of
each scene were randomly sampled to contain N=16384 points. If a point cloud contained
less than N points, it was padded by random point repetitions. Each scene contains K
coarse detections that are described through 7 parameters (x, y, z, h, w, l, r) as in Project
1. For the training samples K=300, for the validation and test sampled K=100. The initial
proposals are passed through a low threshold NMS, hence contain 0’s that are filtered out
during access. The implemented get data() function can be used to access the data keys
individually. Please refer to the function description for more information.
The Dataset object requires Tasks 2 and 3 to be completed to function within the training
script. This file does not need to be altered for Problem 1.

In addition to the dataset script, the solution template contains the following:

• utils/: Under the utils/ directory you are given a python script designated for each
task following the notation task*.py. Your solutions for Problem 1 must be implemented
in these functions with pre-written return statements as these will be called later within
various sections of the main code. All necessary libraries and modules for each task are
imported for you, but feel free to import additional libraries that you require for your
solutions.

2https://gitlab.ethz.ch/dlad21/exercise3

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

Deep Learning for Autonomous Driving 3

We additionally provide evaluation utilities eval.py and a visualization script vis.py.
These are called within the training loop and do not need to be altered.

• tests/: For each problem we also provide a test case which can be executed through
tests/test.py to verify some of your results. It is highly recommended that you follow
the ordering of the tasks and only move on when your results match that of the recorded
tests. While you are not given a test case for tasks including randomness, we highly
recommend that you validate your solutions through other means, e.g. by visualizing your
implementation using your solution from Project 1 (3dvis.py).

• config.yaml: Configuration file for the data generation, network architecture, training
and logging. The output directory is given by trainer:default root dir and must be
set. Each high level key is treated as an iterable whose elements are passed on as arguments
to the corresponding initialization functions. The trainer and logger declarations can be
found here3,4 respectively.
Example: Any argument in the pl.Trainer init function can be declared in config.yaml to
be passed to the pl.Trainer object. To resume from a previous checkpoint simply declare
trainer:resume from checkpoint:‘YOUR/CKPT/PATH’.
All parameters given in the task descriptions can be found in the config file. Each function
description contains the necessary keys to access these parameters.

• model.py: A base network implementation for the second stage decoder (illustrated in
Fig. 2). The network takes in sampled pooled ROI’s and predicts the 7 degrees of freedom
of a 3D bounding box along with a confidence score. The network consists of three set
abstraction layers with increasing radii. The last set abstraction layer acts globally on the
entire subsampled set. Each task head consist of a two layer MLP. Architecture details
are determined using the configuration file config.yaml and should not be modified for
Problem 1.

• train.py: Pytorch lightning training script that requires Task 2, 3 and 4 to be completed
to function, and Tasks 1, 5 for correct performance tracking. The first sample in the
validation set will be visually logged in W&B every epoch. This file does not need to be
altered for Problem 1.

Problem 1. Building a 2 Stage 3D Object Detector (12 point(s))

Our goal for Problem 1 is to refine the proposals provided by the first stage RPN.
Before we can begin with the refinement of our first stage results, we need to first determine if

the results are good enough to be refined to begin with, i.e. we need to evaluate the performance
of our first stage detector and check if we have successfully (coarsely) detected the vehicles in
the given scenes. The question thus becomes: How? How can we determine if an object is
detected, i.e. if a bounding box prediction is correct?

To answer this we need to first understand a crucial metric: the Intersection-over-Union
(IoU). The IoU of a bounding box and its corresponding ground truth states the ratio of the
intersecting volume over the union of the volumes. Thus, an IoU of 1 implies that the pre-
dicted bounding box perfectly overlaps with the ground-truth, and an IoU of 0 implies that the
predicted bounding box and the ground truth do not intersect in the 3D space.

To determine if the detection is correct or wrong, a threshold value is set for the IoU. Given
a threshold of t there are four cases that can be observed: (1) True Positive (TP), if the IoU is
greater or equal to t the prediction is correct (2) False Positive (FP), if the IoU is less than t the
prediction is wrong (3) False Negative (FN), if there exists a ground truth bounding box but
no corresponding detection, i.e. if the IoU of all predictions within a scene never exceed t for a
given ground truth box (4) and sticking by definition True Negative (TN), if there is no object

3https://pytorch-lightning.readthedocs.io/en/1.2.0/api/pytorch lightning.trainer.trainer.html
4https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch lightning.loggers.wandb.html

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

Deep Learning for Autonomous Driving 4

Se
t A

bs
tr

ac
tio

n

Se
t A

bs
tr

ac
tio

n

Se
t A

bs
tr

ac
tio

n

Co
n�

de
nc

e
Sc

or
e

Es
tim

at
io

n
3D

 P
ro

po
sa

l
Re

�n
em

en
t

pooled ROI

Figure 2: Stage-2 box refinement network architecture and illustration of ROI pooling on point
coordinates.

and we did not predict one. As one can imagine, TN is not at all useful for object detection,
hence we mostly ignore it.

Back to our quest of evaluating the first stage results... The recall, which is a metric that
states the ratio of the true positives to all positives (Recall=TP/(TP+FN)), is perfect to assess
the quality of our first stage proposal generator.

1. Given a threshold of t = 0.5, compute the average recall of the first stage network proposals
for the val -set.
Report: What is the average recall for the val -set? Why is recall a good metric to assess
the quality of the first stage proposals (as opposed to e.g. average precision)?

Hint: Make sure to check your implementation with the given benchmark as the IoU cal-
culations will come up in most of the following tasks.
Note: Implement this task in utils/task1.py. The compute recall function should
return the recall for a set of predictions and target bounding boxes. You can and should
divide your workflow into other functions within the file to increase readability. For task
1, you are given two additional functions to complete: label2corners and get iou. All
three functions will later be needed for other tasks. Please refer to the function descrip-
tions for more information.
Test: You can test your implementation by either executing python tests/test.py

--task 1 to run on your local machine or by following the instructions in the README.md
of the code template to run on a CPU node on AWS. Make sure you successfully pass the
test before moving on. If you exceed the duration test, make sure to rethink about your
implementation as this will cause a severe bottleneck when you start to train the network.
Fun fact: Almost all 3D object detection benchmarks are evaluated using a threshold of
0.7 IoU for vehicles and 0.5 for harder object such as pedestrians and cyclists. However for
2-stage detectors, the common practice is to evaluate the first stage results with a 0.5/0.25
IoU threshold.

Now that we know we have a solid foundation, let’s begin preparing our data for the second
stage refinement network. For each scene we are given roughly 300/100 detections, which mean
300/100 possible inputs for the second stage network. We want to not only feed the point
coordinates and intensities into the second stage but also all other information extracted in the
first stage.

2. Pool ROI’s to form the input for the second stage model. An illustration of ROI pooling
on point coordinates can be seen in Fig. 2 - left.
Report: Generate 3 such examples of ROI figures including the points and bounding
box from 3 different scenes. You can use your results from Project 1 to perform the
visualization or use the utils/vis.py to visualize with W&B. In your report, include the
frame names and the bounding box parameters corresponding to each figure.

(a) Enlarge predicted 3D bounding boxes by δ = 1.0 meters in all directions. As our
inputs consist of coarse detection results from the stage-1 network, the second stage

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

Deep Learning for Autonomous Driving 5

will benefit from the knowledge of surrounding points to better refine the initial
prediction.
Hint: Make sure your bounding box center remains in the center of your enlarged
bounding box! This will help when filtering the points in (b).

(b) Form ROI’s by finding all points and their corresponding features that lie in each
enlarged bounding box. Each ROI should contain exactly 512 points. If there are
more points within a bounding box, randomly sample until 512. If there are less
points within a bounding box, randomly repeat points until 512. If there are no
points within a bounding box, the box should be discarded.

Note: Implement this task in utils/task2.py/roi pool(). The function should return
3 values: (1) an np.array of valid bounding boxes of size (K’,7) with K’ indicating the
number of bounding boxes in the scene that contain at least one point, (2) an np.array of
size (K’,512,3) for all points within each box and (3) an np.array of size (K’,512,128) for
the corresponding features of all points within each box. As always, you can and should
divide your workflow into other functions within the file to increase readability.
Test: You can test your implementation by either executing python tests/test.py

--task 2 to run on your local machine or by following the instructions in the README.md
of the code template to run on a CPU node on AWS. Important: This test will not check
the sampling and point selection but only that you have the valid bounding boxes. Make
sure you successfully pass the test and confirm that your implementation is correct through
visualization which is required for the report. As mentioned before, you can use your re-
sults from Project 1 Task 2.3. If you exceed the duration test, make sure to rethink about
your implementation as this will cause a severe bottleneck when you start to train the
network.

Now that we have our inputs we need to assign each input a target bounding box such that we
can supervise our training. In other words, we need our outputs. For this we will be employing
a rather simple method where we assign each coarsely predicted bounding box a ground truth
target with which it has the highest IoU. Luckily we have most of the code ready for this from
Task 1.

Furthermore we need to be clever with what samples we input to our second stage network.
Autonomous driving scenes inherently favor background samples (samples that are not objects)
as opposed to foreground samples (objects) since there are at most a handful of objects in a
typical scene.

For this project we consider a proposal to be a foreground sample when the IoU with its
ground truth bounding box is greater than or equal to 0.55 and a background sample when the
IoU is less than 0.45. If a background proposal has less than 0.05 IoU with its corresponding
ground truth it is considered as an easy background sample. Otherwise it is considered a hard
background sample. Furthermore, for 2-stage detectors, each bounding box that has the highest
IoU for a ground truth bounding box is considered an additional foreground sample regardless
of its IoU (assuming > 0). When training our network, to benefit more from the classification
pipeline, it is vital to feed samples from all three classifications as to not overfit to a single set.

3. Generate the final input-output pairs per scene.
Report: Visualize a scene from the training set with all proposals. As opposed to Fig. 1
- right your scene should only contain the pooled point. In your report, include the frame
name.

(a) Using the highest IoU, assign each proposal a ground truth annotation. For each
assignment also return the IoU as this will be required later on.

(b) For training only: sample 64 proposals per scene. (1) If there are only foreground
proposals in a scene, all 64 samples should be foreground. If less than 64 exist, they
should be randomly repeated until 64, if more exist, they should be randomly sampled
until 64. (2) If there are only background proposals in a scene, all 64 samples should
be background. Background proposal sampling is discussed later. (3) If the scene
contains both foreground and background proposals: (3-1) if there are more than 32

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad
天生喜欢

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

Deep Learning for Autonomous Driving 6

foreground samples, foreground proposals should be sampled until 32. The remaining
32 will then be background samples. (3-2) if there are less than 32 foreground samples,
all foreground samples should be taken, and the remaining should be sampled from
the background proposals such that a total of 64 are sampled per scene.

Background proposal sampling: 50% of the sampled background proposals should be
easy background samples and the remaining 50% should be hard background samples
when both exist within the scene (again, can be repeated to pad up to equal samples
each, if odd number of samples need to be selected, it should be from the easy sample
pool). If only one difficulty class exists, all samples should be of that class.

When matching ground truth to proposal, if a proposal is considered positive due
to the highest ground truth IoU criteria, it should be considered a new sample (i.e.
repeated) with the new ground truth annotation.

For validation: all RPN outputs should be fed as input to the seconds stage module
with corresponding assigned targets and IoU’s.

Report: Why is such a sampling scheme required? What would happen if we (1) randomly
sample from all proposals for each scene? (2) don’t sample easy background proposal at
all? (3) consider a sample to be foreground if it’s above 0.5 IoU and background otherwise?
Why do we need to match the ground truth with its highest IoU proposal?
Note: Implement this task in utils/task3.py/sample proposals(). The function should
return 4 values: (1) an np.array of shape (64,7) indicating the assigned target labels for
each sampled point, (2) an np.array of shape (64,512,3) for the pooled points in each pro-
posal, (3) an np.array of shape (64,512,128) for the pooled features of the points in each
proposal and (4) an np.array of length 64 stating all IoU’s of proposal - ground truth box
pairing. As always, you can and should divide your workflow into other functions within
the file to increase readability.
Hint: See the imported libraries? You can freely reuse your functions from task 1!

Now that we have our training samples we can already start training. For the regression task we
will employ the commonly used smoothL1 loss, which can be interpreted as a combination of L1
and L2 as it acts as an L1 loss when the absolute value of the argument is high (usually > 1),
and it acts as an L2 loss when the absolute value of the argument is close to zero (usually < 1).
The exact equation is given by:

smoothL1 =

{
0.5x2, if |x| ≤ 1

|x| − 0.5, otherwise
(0.1)

For the classification task, i.e. the confidence score estimation, we will use binary cross en-
tropy. The model prediction x after passing through a sigmoid function will be in the interval
{x ∈ R | 0 ≤ x ≤ 1} and will state the likelihood of the predicted bounding box representing
a detected object. The exact equation is given by:

BCE = −[y · log x+ (1− y) · log(1− x)] (0.2)

As seen in utils/task4.py, a base RegressionLoss- and ClassificationLoss modules are already
implemented using pytorch.nn prebuilt blocks, which is convenient as these loss blocks automat-
ically handle edge cases such as with possible log(0) and log(1) encounters in the information
function calculations. However as you might imagine, these loss modules are not in working
condition for our project.

4. Complete the implementation of the loss function modules for the regression and classifi-
cation pipelines.

(a) We do not want to define the regression loss over the entire input space. While
negative samples are necessary for the classification network, we only want to train
our regression head using positive samples as the negative samples most likely don’t
contain an object to begin with. Use 3D IoU≥ 0.55 to determine if a sample is positive

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

Deep Learning for Autonomous Driving 7

and alter the RegressionLoss module such that only positive samples contribute to the
loss. Additionally, as the size plays a crucial role in the average precision, following
literature, the contribution to the loss of the three size parameters (h,w,l) should be
multiplied by 3.
The regression loss will therefore be given by:

Lreg = Llocation + 3 ∗ Lsize + Lrotation (0.3)

with Llocation,Lsize,Lrotation being the smoothL1 loss defined over the respective
parameters.

(b) Extract the target scores depending on the IoU. For the training of the classification
head we want to be more strict as we want to avoid incorrect training signals to
supervise our network. A proposal is considered as positive (class 1) if its maximum
IoU with ground truth boxes is ≥ 0.6, and negative (class 0) if its maximum IoU ≤
0.45.

Note: Implement this task in utils/task4.py. For both losses the predictions and targets
should be filtered based on the given conditions before being input into self.loss().
Test: You can test your implementation by either executing python tests/test.py

--task 4 to run on your local machine or by following the instructions in the README.md
of the code template to run on a CPU node on AWS. Make sure you successfully pass the
test before starting to train.

At this point, our network should be able to learn and predict a fixed set of vehicle bounding
boxes. You can test this out by observing the running loss in the progress bar during training
(Obviously, it should decrease). The loss however doesn’t tell us an easy to understand story so
don’t start training just yet as there is one final step: evaluation.

Firstly let’s summarise our current state. At this point we should have an array of predictions
for each scene. To be precise, 64 refined bounding boxes for each scene as the refinement module
only works on individual regions of interest. However, - crazy thought - it is very unlikely that
all driving scenes contain 64 vehicles. In fact almost none of them do (think of the possible
traffic, ouch!). So our task now is to reduce the number of predictions per scene in a clever way
and for this we will employ Non-maximum-Suppression (NMS):

Algorithm 1: Non-maximum Suppression

Given: Set of predictions Sp, corresponding confidence scores Cp, threshold t
Result: Set of non-overlapping final predictions Sf

while Sp is not empty do
Di = Sp.pop(i) with i = argmaxCp

Sf .append(Di)
Sp.remove(Siou) with Siou ⊂ Sp predictions where the IoU with Di ≥ t
Cp.remove(Ciou) with Ciou ⊂ Cp scores of predictions where the IoU with Di ≥ t

end

In layman’s terms the proposal with highest confidence score is selected. The IoU with remaining
proposals are calculated. If the IoU exceeds a given threshold, the overlapping less confident
predictions are removed. This is repeated until all there are no proposals left in the initial set.

5. Implement NMS with a threshold of 0.1 to reduce the number of predictions per frame.
The IoU should be calculated only on the BEV.
Report: Must the IoU be calculated on BEV or can it also be calculated on 3D? What
advantages does the 2D BEV IoU have over 3D (or vice versa) for NMS?
Hint: If you want to reuse your 3D IoU calculation function from task 1 for the 2D IoU
calculation, you can set the (y, h) to (0, 1).
Note: Implement this task in utils/task5.py/nms(). You can and should reuse your
already implemented functions from task 1.
Test: You can test your implementation by either executing python tests/test.py

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

Deep Learning for Autonomous Driving 8

--task 5 to run on your local machine or by following the instructions in the README.md
of the code template to run on a CPU node on AWS. Make sure you successfully pass the
test before starting to train if you want to get the correct visualisation samples.

We have our baseline and now we can train! In the evaluation utilities script, we provide a
method to calculate the mean average precision (mAP) which is a crucial metric in 3D object
detection. You do not have to alter the file as this utilizes your implementations from task 1
and is baked into the training loop. Careful, this is not the mean of the precision but the area
under the precision-recall curve. For a more detailed explanation on the mAP metric we highly
recommend the following blog post5.

The resulting predictions from our network are evaluated on three ground truth bounding box
difficulty levels: easy, moderate, hard (determined based on distance, truncation and occlusion).
The leaderboard is ordered by the moderate difficulty mAP.

6. Train the network.
Report: In your report, document the loss- and precision curves along with 3 example
scene visualizations from the beginning, mid-way and end of the training cycle. Submit
the generated submission.zip to the Codalab leaderboard to verify your implementation
and report your test metrics.
Note: The leaderboard standings for this problem have no impact on the grading. While
we allow for up to 5 submission, one should suffice. The test set evaluation is there such
that you (and we) can verify your implementation.
Expected results: 81.34 (Easy), 72.35 (Moderate), 71.11 (Hard) %mAP
For training configurations please refer to config.yaml. You do not need to identically
match the expected results as they may vary due to random initialization among other
factors.

Problem 2. Taking Matters Into Your Own Hands (8+2 point(s))

Now that we have established a baseline method and can successfully detect vehicles directly
from LiDAR point clouds it is time to tackle some of the shortcomings of the second stage
refinement network and therefore improve its performance.

1. Propose a method to improve the network performance. For this problem you are free to
come up with a novel idea, or implement and analyse a method from the current literature
to improve the networks performance or its speed.

Report: Hand in your report as a PDF with a maximum of 4 pages (additional pages can be
used for listing references). We recommend using Overleaf for typesetting in LATEX, but any text
editor capable of exporting into PDF should do. The final report should contain an accurate
and complete description of your solution following the given formatting:

Abstract: A short summary of your proposal.
Introduction: Describe your problem and state your contributions. What are the
shortcoming of the baseline method that you intend to solve?
Method: Describe your idea and how it was implemented to solve the problem.
Survey the related work, giving credit where credit is due.
Results: Show evidence to support your claims made in the introduction. Compare
your proposed method to the baseline from Problem 1. While you should report your
final score on the test set, any further ablation studies required should be conducted
on the validation set as you are limited to only 10 submissions.
Discussion: Discuss the strengths and weaknesses of your approach based on the
results.

If you have implemented changes to the training procedure, you must include a README file
explaining how to run your code and reproduce your experiments.
Grading: You will be graded based on the following:

5https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

石可心的iPad

Deep Learning for Autonomous Driving 9

Quality of your paper: Background, method, and experiment are clear. Language
is good. Scores and baselines are well documented.
The execution of idea: The experiments done make sense in order to tackle the
proposed issues of the Problem 1 baseline given the proposed method. There are
no obvious experiments not done that could greatly increase clarity. The submitted
code and other supplementary material is understandable, commented, complete,
clean and there is a README file that explains it and describes how to reproduce
your results if necessary.
Novelty: The idea is novel and useful.

Furthermore you can receive up to +2 bonus points from the leaderboard standings on Co-
dalab based on a linear interpolation from the highest performing network to our first stage
benchmark based on the moderate difficulty mAP.
Note: As it should be obvious, the performance gains of the proposed method do not play a
role in the grading of this problem but only on the possible bonus points that can be acquired.
What is important is correct argumentation with sufficient experimental backing.

References

[1] Li, Z., Yao, Y., Quan, Z., Yang, W., Xie, J.: Sienet: Spatial information enhancement
network for 3d object detection from point cloud. arXiv preprint arXiv:2103.15396 (2021)

[2] Shi, S., Guo, C., Jiang, L., Wang, Z., Shi, J., Wang, X., Li, H.: Pv-rcnn: Point-voxel feature
set abstraction for 3d object detection. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 10529–10538 (2020)

[3] Shi, S., Wang, X., Li, H.: Pointrcnn: 3d object proposal generation and detection from
point cloud. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 770–779 (2019)

